A Machine Learning Approach to Musically Meaningful Homogeneous Style Classification

نویسندگان

  • William Herlands
  • Ricky Der
  • Yoel Greenberg
  • Simon A. Levin
چکیده

Recent literature has demonstrated the difficulty of classifying between composers who write in extremely similar styles (homogeneous style). Additionally, machine learning studies in this field have been exclusively of technical import with little musicological interpretability or significance. We present a supervised machine learning system which addresses the difficulty of differentiating between stylistically homogeneous composers using foundational elements of music, their complexity and interaction. Our work expands on previous style classification studies by developing more complex features as well as introducing a new class of musical features which focus on local irregularities within musical scores. We demonstrate the discriminative power of the system as applied to Haydn and Mozart’s string quartets. Our results yield interpretable musicological conclusions about Haydn’s and Mozart’s stylistic differences while distinguishing between the composers with higher accuracy than previous studies in this domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Prediction of Iranian EFL Learners’ Learning Approaches Through Their Teachers’ Narrative Intelligence and Teaching Styles: A Structural Equation Modelling Analysis

It goes without saying that there are many influential factors affecting the success of any learning experience, and teachers are definitely among the significant factors influencing the process of teaching and learning. In this respect, the present study sought to investigate the prediction of Iranian English as a Foreign Language (EFL) learners' learning approaches through their teachers’ nar...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014